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Abstract
A model of pole vaulting with a ¯exible pole was developed with the aim of predicting
the optimum take-off technique and pole characteristics for a typical world-class pole
vaulter. The key features of the model are that it includes the interdependence of the
take-off angle and the take-off velocity, and that it accounts for the energy losses in the
pole plant and take-off phases of the vault. A computer simulation program was used to
systematically investigate the effect of different combinations of take-off velocity, take-
off angle, grip height and pole stiffness on the performance of a world-class male
vaulter. For the highest vault with this model, the vault height and the optimum
combination of take-off velocity, take-off angle, grip height and pole stiffness were in
good agreement with measured values for world-class vaulters using ®breglass poles.

The results from the model were compared with those from a model of vaulting with
a rigid pole. There was a clear performance advantage to vaulting with a ¯exible pole.
The ¯exible pole produced a 90 cm higher vault by allowing a 60 cm higher grip and by
giving a 30 cm greater push height. There are two main advantages of a ¯exible
®breglass pole over a rigid pole made of steel or bamboo. A ¯exible pole reduces the
energy dissipated in the vaulter's body during the pole plant, and it also lowers the
optimum take-off angle so that the athlete loses less kinetic energy when jumping up at
take-off.
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Introduction

The pole vault is an exciting athletic event that
requires high levels of sprinting, jumping and
gymnastic ability. Figure 1 shows the sequence of
actions of a world-class pole vaulter. The main
aim of the run-up is to arrive at the take-off with
the maximum amount of controlled speed. At
take-off, the vaulter plants the pole into the take-
off box and executes an upwards running jump.

The pole begins to bend under the effect of the
momentum of the vaulter, and the vaulter and
pole system rotates about the take-off box with
the initial kinetic energy of the run-up being
transformed into potential energy of the vaulter
above the ground. As the pole bends and recoils,
the vaulter rotates about the shoulders, and then
pulls up on the pole so as to pass over the crossbar
feet®rst. The peak height achieved by the vaulter
is determined mostly by the kinetic energy at the
end of the run-up, but there are also considerable
energy losses in the pole plant and take-off phases,
and there is a signi®cant positive contribution
from the work done by the vaulter during the pole
support phase (Stepp 1977; Armbrust 1993; Lin-
thorne 1994).
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The physical characteristics of the pole are
important in pole vaulting. International Amateur
Athletic Federation rules do not place any restric-
tion on the length of the pole, the materials from
which it is constructed, or the energy storage
capacity of the pole (IAAF 2000). Most world-class
male pole vaulters use ®breglass or carbon ®bre
poles that are 5.00±5.20 m long. These poles may
be bent by over 120° without breaking, and are able
to store an amount of elastic strain energy that is
equivalent to about one half of the vaulter's run-up
kinetic energy (Arampatzis et al. 1999; Gros &
Kunkel 1988, 1990). Most world-class vaulters have
the top of their upper grip at between 4.90 and
5.15 m from the lower tip of the pole. This
distance is called the vaulter's `grip height'. A
vaulter also has what is termed an `effective grip
height', which is 20 cm less than the grip height
because of the depth of the take-off box below the
level of the runway. The difference between
the vaulter's effective grip height and the height
of the crossbar is commonly called the `push
height'. World-class male pole vaulters are able to
clear a crossbar set at 5.80±6.15 m above the
ground, and have a push height of about 1.00 m.

Rationale for the study

Computer simulation studies have advanced our
understanding of the mechanics of pole vaulting.
Researchers have produced models that account for
most of the major aspects of the event, and the

resulting simulations appear realistic in that they
agree with the experiences of athletes and coaches,
especially concerning the effects of pole selection
and changes in movement patterns on vault per-
formance (Walker & Kirmser 1973, 1982; Vernon
1974a, 1974b; Hubbard 1980; Braff & Dapena
1985; Durey & Journeaux 1995; Ekevad & Lund-
berg 1995). Despite considerable work, the rela-
tions between the size, speed and strength of the
athlete, the characteristics of the pole, and the
technique employed by the athlete, are not fully
understood. One of the goals of sports biomechan-
ics researchers is to develop a computer simulation
program that enables the optimum pole and
optimum technique for an athlete to be predicted
from the individual's anthropometric and strength
measures.

An outstanding task in progressing towards this
goal is to produce a model that accounts for the
energy losses associated with the pole plant and
jumping actions in the take-off phase. An adequate
consideration of the take-off phase has been con-
spicuously absent from simulation studies of pole
vaulting. The present paper proposes a mathemat-
ical model of pole vaulting that includes the
relation between the take-off angle and the take-
off velocity, and accounts for the energy losses in
the pole plant and take-off phases of the vault. The
aim was to produce a model that accurately predicts
the optimum combination of take-off velocity,
take-off angle, pole stiffness, and grip height
for a typical world-class pole vaulter. Computer

Figure 1 Sequence of movements by a
world-class male pole vaulter. Reproduced
from Ganslen (1979).
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simulations were performed using a body mass,
body height and run-up velocity that are represen-
tative of a world-class male vaulter, and the effects
of the take-off angle, the pole stiffness, and the grip
height on the vault performance were systematic-
ally investigated.

The simulations from the pole vault model were
compared to those from a model of pole vaulting
with a rigid pole. A comparison of the optimum
vault height, grip height and take-off angle for the
two models was expected to shed light on the
question of why athletes are able to vault higher
with a ¯exible ®breglass pole than with the old-
style bamboo pole or steel pole.

The following sections provide additional back-
ground on the need to consider energy losses in the
take-off phase of the vault, and on previous
explanations of the advantage of the ¯exible pole.
A model of vaulting with a rigid pole is presented,
which is then extended to produce a model of
vaulting with a ¯exible pole. For both models, the
optimum grip height and the optimum take-off
angle and take-off velocity are identi®ed. The
results are then compared to reveal the biomech-
anical advantage of the ¯exible ®breglass pole over
the relatively rigid bamboo pole or steel pole.

Shortcomings of previous simulation studies

Vernon (1974a, 1974b) and Walker & Kirmser
(1973, 1982) used a ¯exible-pole model with a one-
segment pendulum model of the vaulter to show
that successful vaulting is highly sensitive to
changes in grip height, pole stiffness and take-off
velocity. They also showed that success depends
strongly on the timing of the movement patterns
during the vault. Later studies improved the
realism of the simulations by including the torque
applied by the vaulter to the end of the pole, and by
using multisegment vaulter models controlled by
internal joint torques (Hubbard 1980; Braff &
Dapena 1985; Durey & Journeaux 1995; Ekevad &
Lundberg 1995).

Because these computer simulation studies did
not account for the energy losses associated with
the pole plant and jumping actions in the take-off

phase of the vault, they were not able to predict the
optimum combination of take-off and pole param-
eter values for a world-class athlete. For illustra-
tion, Ekevad & Lundberg (1995) assigned the
vaulter a constant take-off velocity and take-off
angle (the vaulter's `initial conditions') and then
examined the effect of the vaulter's actions during
the support phase on the grip height and pole
stiffness required for a successful vault. The
authors did not explain why the vaulter would
choose that particular take-off angle, and they did
not consider how the choice of take-off angle
would affect the vaulter's take-off velocity,
optimum grip height and optimum pole stiffness.

The choice of take-off angle by the vaulter is
important to successful vaulting. In essence, the
aim of pole vaulting is to convert the kinetic energy
generated in the run-up into the gravitational
potential energy of the vaulter at the peak of the
vault. However, the action of jumping up at take-
off dissipates some of the vaulter's kinetic energy
(Linthorne 1994). Pole vaulters have found by trial-
and-error that the height of the vault is greatest
when they jump up to produce a take-off angle of
15±20° (McGinnis 1987, Performance Limiting Fac-
tors in the Pole Vault. Unpublished report to the
United States Olympic Committee Sports Medi-
cine Council; Gros & Kunkel 1988, 1990; Angulo-
Kinzler et al. 1994). Linthorne (1994) used a
mathematical model to show that the optimum
take-off angle is a compromise that results in the
greatest take-off energy. The vaulter retains more
of their kinetic energy as the take-off angle is
directed closer to a right-angle through the pole,
but the vaulter suffers a reduction in kinetic energy
as the vaulter jumps up to increase the take-off
angle. Unfortunately, Linthorne's model applies
only to vaulting with a rigid pole. Its predictions
are in good agreement with measurements of
vaulters using the old-style bamboo poles or steel
poles, but its predictions do not agree with meas-
urements of vaulters using ®breglass poles.

Ekevad & Lundberg (1997) produced a simple
model of pole vaulting with a ¯exible pole, which
considered the vaulter as a passive point mass on
the end of the pole. They examined the in¯uence of
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pole length and pole stiffness on the energy losses
in the take-off. An optimum combination of pole
length and pole stiffness is reported, but only for a
single speci®c combination of take-off velocity and
take-off angle.

A new model of pole vaulting is therefore
required if the optimum combination of take-off
velocity, take-off angle, grip height and pole
stiffness is to be determined. The model must
account for: (1) the interdependence of the take-off
angle and the take-off velocity; (2) the energy losses
in the pole plant and take-off phases of the vault;
and (3) the effects of a ¯exible pole.

Why do vaulters jump higher
with a ¯exible pole?

Pole vault performances suddenly improved when
the ¯exible ®breglass pole was adopted in the early
1960s, and some observers decried their use,
believing that the pole was `catapulting' the vaulter
up over the bar (Cramer 1970). However, this
catapult notion is dispelled by the fact that the
vaulters' push heights did not increase much when
the ®breglass pole was introduced (Jeitner 1967;
Jagodin 1973). A notable feature of the adoption of
the ®breglass pole was the large increase in grip
height. At the end of the steel pole era the grip
heights of world-class vaulters were at about
4.10 m, whereas those of early ®breglass vaulters
were 60 cm higher at about 4.70 m (Jagodin 1973).
The higher grip height is commonly considered to
be the main advantage of the ¯exible pole.

Many articles have appeared in coaching journals
attempting to explain the higher grips used when
vaulting with a ¯exible pole. For example, Attig
(1979) and Geese (1987) argue that a ¯exible pole
bends to some shorter effective length, reducing
the moment of inertia of the vaulter on the pole,
and so enabling the pole to rotate to vertical more
easily. Unfortunately, this argument violates the
principle of conservation of energy (Linthorne
1989). A vaulter's grip height is actually determined
primarily by the kinetic energy at take-off. The
higher the kinetic energy at take-off, the longer the
pole the vaulter is able to rotate to vertical.

The most credible explanation for the higher
grips when using a ¯exible pole is that the pole
reduces the shock experienced by the vaulter, and
so less energy is dissipated in the vaulter's body
during the take-off (Stepp 1977; Linthorne 1989;
Armbrust 1993). The vaulter therefore has a higher
take-off velocity, and is able to rotate a longer pole
to vertical.

There is a lesser known difference between
vaulting with a ¯exible pole and vaulting with a
rigid pole which may also be important. Linthorne
(1994) noted that the take-off angles for vaulters
using ®breglass poles are lower than for vaulters
using bamboo or steel poles (Angulo-Kinzler et al.
1994; Ganslen 1961). He suggested that part of the
contribution to the advantage of a ¯exible pole may
be that the optimum take-off angle is lower, and so
the vaulter does not lose as much kinetic energy
when jumping up at take-off. As regards the present
study, it was therefore expected that a successful
model of pole vaulting must produce two key
results: (1) the vault height and grip height are
considerably higher with a ¯exible pole than with a
rigid pole; and (2) the take-off angle is lower with a
¯exible pole than with a rigid pole.

Rigid-pole model

The model of vaulting with a rigid pole presented
here is similar to an earlier mathematical model
(Linthorne 1994). The previous rigid-pole model
was simpli®ed slightly so that its predictions could
be directly compared with those of the ¯exible-pole
model, which is described in the next section. In
both the rigid-pole and ¯exible-pole models, the
vaulter has a body height of 1.85 m, a body mass of
80 kg, and is capable of attaining a horizontal
velocity of 10.0 m s±1 in the last stride before take-
off. These values are representative of world-class
male vaulters (McGinnis 1987, Performance Limit-
ing Factors in the Pole Vault. Unpublished report to
the United States Olympic Committee Sports
Medicine Council; Gros & Kunkel 1988, 1990;
Angulo-Kinzler et al. 1994). Female vaulters are
not considered in this study. The pole vault has
only recently been adopted seriously by female
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athletes, and so the event is considered to still be in
the `development' stage.

Both the rigid-pole model and the ¯exible-pole
model consider the athlete as a passive point-mass
on the end of the pole. It is recognized that the
vaulter adds to the height of the vault by perform-
ing muscular work during the vault, and that a
successful vault is highly sensitive to the timing of
the control actions of the vaulter. Nevertheless, the
control actions of the vaulter were deliberately
omitted so as to produce a tractable model which
would not require an extremely large number of
simulations to reveal the broad effects of the energy
loss mechanisms in the take-off and pole plant
phases.

Take-off phase

Figure 2 shows a schematic diagram for an athlete
vaulting with a rigid pole. The vaulter is a point-
mass, M, on the end of a massless and perfectly
rigid rod of length L0. The pole length is the height
of the vaulter's upper grip on the pole, and the
height of the vaulter at take-off, h, is taken as the
vaulter's body height.

The take-off phase of the vault is essentially a
collision of the vaulter and pole with the ground.

There is a reduction in velocity when the vaulter
plants the take-off leg and jumps up off the ground,
and a further reduction when the vaulter plants the
pole into the take-off box. In this model, the energy
loss associated with the vaulter's jump is separated
from that of the pole plant, even though in practice
these two events usually occur simultaneously.
Here, take-off velocity refers to the velocity as the
vaulter jumps up off the ground, just before
planting the pole into the take-off box. The vaulter
has a take-off velocity, v, directed at an angle, /, to
the horizontal, as shown in Fig. 2. Figure 3 shows
the decrease in the vaulter's take-off velocity with
increasing take-off angle. This curve corresponds
to a world-class vaulter, and accounts for the effects
of carrying and jumping with the pole (Linthorne
1994).

Pole plant phase

Just before the pole plant, the take-off kinetic
energy of the vaulter may be divided into the
kinetic energy associated with the component of
the velocity that is perpendicular to the pole (v^),
and the kinetic energy associated with the compo-
nent of the velocity that is parallel to the pole (v//)
(see Fig. 2). When vaulting with a perfectly rigid

Figure 2 Model of the vaulter and pole when vaulting with a
rigid pole. The thin solid line shows the trajectory of the
vaulter. The vaulter and pole are shown at the instant of take-
off, and at the peak of the vault.

Figure 3 Take-off velocity as a function of the take-off angle for
a world-class pole vaulter. Reprinted by permission from
Linthorne (1994).
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pole, the planting of the pole into the take-off box
dissipates the energy associated with v//. The
energy dissipated due to the pole plant, DE, is
given by:

DE � 1=2Mv2 cos2�/� a� �1�
where a is the ground-pole angle at take-off. In this
model, no energy will be lost if the vaulter has a
take-off that is perpendicular to the pole, and all of
the vaulter's take-off kinetic energy will be dissi-
pated if the take-off is parallel to pole. In an actual
vault with a bamboo pole or steel pole, the lost
energy is probably dissipated in the vaulter's body,
rather than in the pole or in the take-off box.

After the take-off and pole plant, the vaulter stays
on the end of the pole and rotates about the take-
off box at constant radius. The only force on the
vaulter is gravity, and so the initial kinetic energy of
the vaulter is gradually converted to gravitational
potential energy.

In a pole vault competition, the vaulter is allowed
to position the crossbar anywhere from 40 cm in
front to 80 cm beyond the back of the take-off box
(IAAF 2000). In this model, the crossbar is vertic-
ally aligned with the lower tip of the pole when the
pole is placed in the take-off box. That is, the
crossbar is vertically aligned with the lowest point
of the take-off box (see Fig. 2). The height with
which the vaulter is credited is the vaulter's height
as the pole rotates through the plane of the
crossbar. Because the vaulter is passive, and so
performs no muscular work during the vault, the
model underestimates the vault height. To account
for this shortcoming, 80 cm was added to the
calculated vault height of each jump (Gros &
Kunkel 1990).

Flexible-pole model

A model of vaulting with a ¯exible pole was derived
from the rigid-pole model by replacing the per-
fectly rigid rod with one of ®nite stiffness. The
important elements in the mathematical descrip-
tion of the ¯exible pole were identi®ed from the
results of other investigators. Hubbard (1980)
modelled the pole as a long slender rod (i.e. an

elastica), and used large de¯ection theory to
calculate the deformation of the pole as a function
of the force and moment applied by the vaulter to
the end of the pole. Hubbard's calculations show
that in the absence of an applied moment, the
behaviour of a ¯exible pole is similar to that of a
perfectly elastic one-dimensional spring which
shortens along its chord in response to an applied
compressive force. The longitudinal reaction force
of the pole, F, is then given by:

F � F0 � 0:6 F0
L0 ÿ L

L0
�2�

where L0 is the unde¯ected pole length, L is the
de¯ected pole length, and F0 is the Euler buckling
load of the pole (see Fig. 4). As in the rigid-pole
model, the vaulter's grip height is equal to the
(unde¯ected) pole length. Measurements by
Fuchimoto et al. (1991) show that for ®breglass
and carbon ®bre poles, the manufacturer's pole
stiffness rating is approximately equal to the Euler
buckling load of the pole. For example, a pole rated
at 80 kg has a Euler buckling load of F0 » 800 N.

Figure 4 Model of the vaulter and pole when vaulting with a
¯exible pole. The thin solid line shows the trajectory of the
vaulter. The vaulter and pole are shown at the instant of take-
off, maximum pole bend, pole release and at the peak of the
vault.
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The ¯exible-pole model does not include the
moment applied by the vaulter to the end of the
pole because this has a relatively minor effect on
the ¯exural characteristics of the pole (Hubbard
1980). Likewise, the non-uniform stiffness of the
pole along its length and the deviation of the pole
from perfectly straight have also been neglected
(Ekevad & Lundberg 1995). Burgess (1996) exam-
ined the optimum pole material and geometry to
minimize the mass of the pole. However, such
considerations are `®ne details' in comparison to
the broad scope of the present investigation, and so
have been neglected.

Take-off and pole plant phases

The dependence of the vaulter's take-off velocity on
the take-off angle is given by the curve in Fig. 3, as
for the rigid-pole model (Linthorne 1994). Special
consideration was required to account for the energy
losses in the pole plant phase. The act of replacing
the perfectly rigid rod with an elastica produced a
¯exible-pole model which did not generate realistic
results. This was because there was no longer a
mechanism for energy dissipation during the pole
plant phase. In this model, no energy was dissipated
when the pole was planted into the take-off box, and
all of the kinetic energy associated with v// was
retained. A maximum vault height of 7.70 m was
produced with an optimum take-off angle of 0°. This
is not consistent with actual vaulting, and so the
description of the pole plant phase of the vault was
revised to include a mechanism for dissipation of
energy in the vaulter's body.

Consider the actions of a vaulter during the take-
off and pole plant (see Fig. 1). Just before the pole
is planted into the take-off box, the vaulter is
driving forward and upward, the vaulter's body is
upright, and the upper arm is extended directly
above the vaulter's head. As the pole is planted into
the take-off box, the vaulter attempts to maintain
the orientation of the arms and torso through
muscular activation, but the force exerted by the
pole is too great, and so the vaulter's arms are
de¯ected backward relative to the shoulders, and
the vaulter's torso is de¯ected backward relative to

the hips. Work is done by the pole in reorienting
the vaulter's body against its muscular forces. Some
of the vaulter's kinetic energy is therefore dissipated
as heat in the vaulter's muscles. Energy may also be
dissipated by inelastic stretching of the tendons and
ligaments as the body is hyperextended.

For the various energy loss mechanisms in the
vaulter's body, the relations between the amount of
energy lost and the vaulter's take-off parameters
and pole parameters are not known. A plausible
model is to consider the vaulter's body as a heavily
damped linear spring which dissipates all the
energy transferred to it. The total energy dissipated
in the vaulter's body, DE, depends on the pole
stiffness and take-off angle according to:

DE � F2
0

2k
cos2�/� a� �3�

where k is a constant.
During the take-off, the relative de¯ection of the

pole is usually less than a few percent, and so the
force exerted by the pole on the vaulter is approxi-
mately equal to the Euler buckling load, F0. The F0

2

factor in Equation 3 means that the energy
dissipated in the vaulter's body increases greatly if
the vaulter decides to use a stiff pole. When
vaulting with a pole of low stiffness, the force
exerted on the vaulter and the de¯ection of the
vaulter's body are relatively small, and so the
energy dissipated is also small. When vaulting with
a pole of high stiffness, the force exerted by the
pole on the vaulter is larger, resulting in a more
extreme de¯ection of the vaulter's body, and hence
a greater dissipation of energy.

The parameter k in Equation 3 characterizes the
`stiffness' of the vaulter's body in the pole plant
phase of the vault. The value of k re¯ects the level
of resistance of the vaulter's arms and torso to
being de¯ected backward relative to the hips by the
pole. Measurements of energy losses at take-off
indicate that k is about 250 N m±1 for a world-class
vaulter (Gros & Kunkel 1988, 1990; Angulo-
Kinzler et al. 1994).

The cos(/ + a) factor in Equation 3 accounts for
the vaulter's take-off angle. No energy will be lost if
the vaulter has a take-off that is perpendicular to the
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pole, and the energy lost will be greatest if the take-
off is parallel to pole. In this model, it is assumed that
the total energy dissipated in the vaulter's body does
not exceed the energy associated with the compo-
nent of the take-off velocity that is parallel to the
pole. That is, for any given take-off angle, the energy
lost due to the pole plant does not exceed that lost
when vaulting with a rigid pole.

After the take-off and pole plant, the vaulter stays
on the end of the pole as it rotates about the take-
off box. In this model, the vaulter releases the pole
when it has recoiled to its initial length, and then
continues in free ¯ight under the in¯uence of
gravity (see Fig. 4). The height with which the
vaulter is credited is the vaulter's height when
passing through the plane of the crossbar after
releasing the pole. To account for the omission of
the work done by the vaulter during the support
phase, 80 cm was added to the calculated vault
height of each jump (Gros & Kunkel 1990).

Results

Computer programs were written in Microsoft
QuickBASIC for the rigid-pole model and for the
¯exible-pole model. In both programs, the vault
simulation commenced just prior to take-off with a
selected pole length and take-off angle (and a
selected pole stiffness in the ¯exible-pole model).
The corresponding take-off velocity was deter-
mined from Fig. 3, and the energy dissipation due
to the pole plant was calculated using Equations 1
or 3, as appropriate. The vault trajectory after the
take-off and pole plant phases was calculated by
numerical integration. A constant integration step
size of 0.01 s was used and found to be adequate.
The position of the vaulter at the end of each time
interval was calculated from the previous position
and velocity, and from the forces acting on the
vaulter. A trace of the entire vault trajectory was
generated, and the vault height was recorded.

Rigid-pole model

Thirteen take-off angles in the range 0° to 50° were
selected. For each take-off angle, a series of vaults

was simulated with pole length increments of 1 cm
over a range of 3.00±6.00 m. The resulting vault
heights were plotted as a function of the pole
length, and the maximum vault height and its
corresponding pole length were determined.

The vaults simulated using the rigid-pole model
displayed the expected pattern of vaulting. For
example, with a short pole the vaulter was able to
rotate through the plane of the crossbar with ease,
but if the vaulter selected a pole that was beyond a
certain length, the vaulter did not have suf®cient
momentum to rotate the pole to vertical. With this
model, the vaulter does not achieve a ¯ight phase
(where the vaulter rises above the height of the
pole) because the model does not include the work
done by the vaulter during the support phase of the
vault. At any given take-off angle, the highest vault
was that for which the vaulter was just able to rotate
the pole to the vertical position. That is, the
maximum vault height was always equal to the
maximum effective grip height (i.e. the maximum
pole length minus the depth of the take-off box),
plus 80 cm to account for the work done by the
vaulter during the support phase. The maximum
vault height and its corresponding pole length (i.e.
grip height) are shown as a function of the take-off
angle in Figs 5 and 6, respectively.

The optimum vault in the rigid-pole model
compares favourably with competition performances.
World-class vaulters from the end of the rigid-pole
era had grip heights of about 4.10 m, and cleared
heights of around 4.70 m (Ganslen 1961; Jagodin
1973; Tamura & Kuriyama 1988) (see Table 1).
However, it is expected that rigid-pole perfor-
mances would have increased by about 30 cm since
then due to increases in the physical capacity of
vaulters, and due to minor technique re®nements.
That is, had the ®breglass pole not been intro-
duced, the best pole vaulters would probably now
be gripping at around 4.40 m on the pole, and be
vaulting about 5.00 m. For the optimum vault in
the rigid-pole model, the vault height (5.10 m),
grip height (4.50 m), push height (0.80 m) and
take-off angle (30°) are similar to those expected if
present-day vaulters were to use bamboo poles or
steel poles.
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Flexible-pole model

For the simulations with the ¯exible-pole model,
13 take-off angles in the range 0° to 50° were
selected. For each take-off angle, a series of
vaults were simulated with pole length increments
of 1 cm over a range of 3.00±6.50 m, and with
pole stiffness rating increments of 1 kg over a
range of 55±140 kg. The resulting vault heights
were plotted as a function of the pole length
and pole stiffness, and the maximum vault height
and its corresponding pole length and pole
stiffness were determined. This process was
performed for k � 125, 250 and 500 N m±1 in
Equation 3.

The vaults simulated using the ¯exible-pole
model displayed the expected pattern of vaulting,
and followed the expected trends in the location of
the peak of the vault to changes in the pole length
and pole stiffness. For example, at any given take-
off angle, increasing the pole length caused the
horizontal position of the peak of the vault to shift
closer toward the take-off point. A similar effect
was produced by increasing the pole stiffness. The
highest vaults were always achieved when the
vaulter selected the pole length and pole stiffness
so that the peak of the vault coincided with the
plane of the crossbar.

On viewing the general pattern of vaulting, it was
evident that a restriction had to be placed on the

Figure 5 Peak height of the vault as a function of the take-off
angle for the rigid-pole model and for the ¯exible-pole model.
The numbers next to the curve for the ¯exible-pole model show
the change in the optimum pole stiffness ratings (in kg).

Figure 6 Grip height as a function of the take-off angle for the
rigid-pole model and for the ¯exible-pole model. The numbers
next to the curve for the ¯exible-pole model show the change in
the optimum pole stiffness ratings (in kg).

Table 1 Comparison of model results with
data for world-class pole vaulters

Variable

Rigid-pole

model

Steel or bamboo

poles 
Flexible-pole

model

Fibreglass or

carbon®bre polesà

Vault height (m) 5.10 4.40±4.80 6.00 5.80±6.15

Grip height (m) 4.50 3.90±4.25 5.10 4.90±5.15

Push height (m) 0.80 0.70±0.90 1.10 0.80±1.20

Take-off angle (°) 30 20±26 18 15±20

Take-off velocity (m s)1) 7.0 No reliable data 8.0 7.5±8.5

Pole stiffness rating (kg) ± ± 80 75±100

 Ganslen (1961), Jagodin (1973), Tamura & Kuriyama (1988).
àAngulo-Kinzler et al. (1994), Gros & Kunkel (1988, 1990), McGinnis (1987,
Performance Limiting Factors in the Pole Vault. Unpublished report to the United States
Olympic Committee Sports Medicine Council).

N. P. Linthorne · Pole vault take-off

Ó 2000 Blackwell Science Ltd · Sports Engineering (2000) 3, 205±218 213



risk to the vaulter when executing a vault. The
reason for this restriction is as follows: at low take-
off angles the highest vaults were always obtained
with a pole of low stiffness. In these vaults the
vaulter travelled low to the ground toward the take-
off box, and then rose sharply to a peak. It is
unlikely that a vaulter would use such a pole
because the success of the vault is highly sensitive
to changes in the pole length. If the vaulter choses a
pole length just slightly longer than the optimum
length, the peak of the vault shifts to well in front of
the plane of the crossbar, and so the vaulter is at
risk of injury by not landing safely in the pit.

Greater realism in the ¯exible-pole model was
achieved by requiring that the vaulter would not
select a pole such that the horizontal position of the
peak of the vault shifted by more than 10 cm per
1 cm change in the pole length. This is equivalent
to preventing a vaulter from risking injury through
a small error in selecting the correct pole length.

The `excessive risk' criterion had the added effect
of restricting the maximum de¯ection of the pole.
Vaults for which there was a high sensitivity of the
position of the peak to the pole length were always
produced with a very large pole de¯ection. In the
unrestricted model, a successful vault could be
achieved with the pole shortening to less than 10%
of its unde¯ected length. By contrast, a ®breglass
pole usually breaks when bent to less than about
60% of its unde¯ected length. Coincidentally, the
value of the `excessive risk' criterion used here
restricted the maximum pole de¯ection to about
that observed in a present-day ®breglass pole.

For the restricted ¯exible-pole model, the maxi-
mum vault height and its corresponding pole
length (i.e. grip height) are shown as a function
of the take-off angle in Figs 5 and 6 (for k �
250 N m±1). Also shown with these curves is the
corresponding optimum pole stiffness rating. The
dependence of the push height on the take-off
angle is shown in Fig. 7. This ®gure compares the
vault height with the effective grip height; the
difference between the two curves is the vaulter's
push height.

For the optimum vault in the ¯exible-pole
model, the vault height (6.00 m), grip height

(5.10 m), push height (1.10 m), take-off angle
(18°), take-off velocity (8.0 m s±1) and pole stiffness
rating (80 kg) are similar to measured values for
present-day world-class vaulters (McGinnis 1987,
Performance Limiting Factors in the Pole Vault.
Unpublished report to the United States Olympic
Committee Sports Medicine Council; Gros &
Kunkel 1988, 1990; Angulo-Kinzler et al. 1994)
(see Table 1). For the optimum vault in this model,
the history of the pole bend and the maximum
degree of pole ¯exion are also similar to those
observed for world-class ®breglass vaulters.

The advantage of the ¯exible pole

There was a clear performance advantage to
vaulting with a ¯exible pole (see Figs 5 and 6).
The ¯exible pole produced a 90 cm higher vault by
allowing a 60 cm higher grip and by giving a 30 cm
greater push height. The optimum take-off angle
for the ¯exible-pole model (18°) was considerably
lower than for the rigid-pole model (30°).

For the rigid-pole model, the optimum take-off
angle occurs when the kinetic energy lost due to
jumping up at take-off equals the energy dissipated
in the vaulter's body during the pole plant. A
similar interplay arises in the ¯exible-pole model.
However, with a ¯exible pole, the energy lost

Figure 7 Push height as a function of the take-off angle for the
¯exible-pole model.
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during the pole plant depends on the pole stiffness.
A low take-off angle requires the vaulter to use a
stiff pole so as to reduce the vaulter's forward
momentum and cause the peak of the vault to
coincide with the plane of the crossbar. Although a
low take-off angle does not result in much loss of
kinetic energy due to jumping up, the stiff pole
results in a very high energy loss in the vaulter's
body during the pole plant, and so the overall
energy loss is high. At the other extreme, a high
take-off angle allows a pole of low stiffness to be
used, and so little energy is lost in the pole plant,
but the vaulter loses a lot of kinetic energy in the
jump up off the ground. The optimum take-off
angle is at an intermediate angle that is determined
by the balance between the kinetic energy lost in
jumping up at take-off, and the energy lost in the
vaulter's body during the pole plant because of the
stiffness of the pole.

The models used in this simulation study satis-
®ed the criterion that the take-off angle when
vaulting with a ¯exible pole is lower than when
vaulting with a rigid pole. Interestingly, at the
optimum take-off angle for each type of pole, about
the same amount of energy is dissipated in the
vaulter's body when the pole is planted into the
take-off box. However, the ¯exible-pole vaulter
jumps up less at take-off, and so retains a greater
velocity at take-off (see Fig. 3). The vaulter is
therefore able to grip higher on the pole, and hence
achieve a higher vault. The lower take-off angle of
the ®breglass vaulter is not commonly recognized,
but it is an important effect of the use of a ¯exible
pole, as is the higher grip height.

This investigation suggests that not all of the
improvement in performance when vaulting with a
¯exible pole is re¯ected as an increase in the grip
height; there is also a moderate increase in the push
height. Measurements of competition vaults by
world-class vaulters support this ®nding. Jagodin
(1973) noticed that the push heights of early
®breglass vaulters were about 8 cm higher than
those of vaulters from the end of the rigid-pole era.
Similarly, Tamura & Kuriyama (1988) report push
heights for present-day ®breglass vaulters that are
about 20 cm higher than for vaulters from the

bamboo pole and steel pole eras. However, some of
this difference may be due to an improvement in
the physical capacity of the vaulters since the
introduction of the ®breglass pole. Also, the
®breglass-pole vaulter may be able to perform
more work during the support phase by being
placed in a mechanically more favourable position.

Sensitivity of the models

The geometry of the rigid-pole model used here is
slightly different from that in Linthorne (1994). In
the earlier model, the vaulter was a point-mass
located at the vaulter's centre of mass, halfway
between the feet and the vaulter's upper grip. The
ground-pole angle (a) in the model was determined
by the vaulter's vertical reach. Unfortunately, this
geometry was dif®cult to incorporate into a ¯exi-
ble-pole model, and so the model was simpli®ed
slightly by representing the vaulter as a mass on the
end of the pole. In the simpli®ed rigid-pole model,
the height of the vaulter at take-off, h, was adjusted
so that the maximum grip height predicted in the
vault simulations agreed with that of the previous
model. Good agreement was obtained for
h � 1.85 m, which conveniently coincides with
the average body height of world-class vaulters.
Therefore, in both the rigid-pole and ¯exible-pole
models presented here, the height of the vaulter's
mass at take-off was set as the vaulter's body height.

For the rigid-pole model, increasing the body
height of the vaulter by 10 cm increased the vault
height and the grip height by about 16 cm, but
there was no change in the optimum take-off angle
(Linthorne 1994). Also, increasing the vaulter's
maximum running speed by 1.0 m s±1 increased the
vault height and grip height by about 30 cm, but
again there was no change in the optimum take-off
angle. Similar effects for increases in body height
and maximum running speed were observed with
the ¯exible-pole model.

A limitation of the pole vault models presented
here is the representation of the vaulter as a passive
point-mass. The model does not include the effects
of the control actions and muscular work per-
formed by the athlete during the support phase of
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the vault. To account for this omission, 80 cm was
added to the height of each vault. As stated before,
the control actions of the vaulter were deliberately
omitted so as to produce a tractable model which
would not require an extremely large number of
simulations to reveal the broad effects of the energy
loss mechanisms in the take-off phase. The good
agreement between the model calculations and
measurements of world-class vaulters suggests that
the model is not overly simplistic, and that the
essential mechanics of pole vaulting have been
included.

The curves shown in Figs 5±7 for the ¯exible-
pole model are for k � 250 N m±1. This value of k
was deliberately chosen to give good agreement
between the calculated optimum vault height and
the performances of a world-class vaulter. There
was no independent estimate of its value. However,
the selection of k � 250 N m±1 produced remark-
ably accurate values for the optimum take-off
angle, take-off velocity, pole stiffness and the
maximum degree of pole ¯exion, again suggesting
that the model accounts for the essential mechanics
of the take-off. Greater values of k gave a higher
maximum vault height and push height, and a
slightly lower optimum take-off angle (see
Table 2).

For the ¯exible-pole model, the inclusion of the
`excessive risk' criterion was necessary to produce
realistic vaults. Relaxing the criterion lowered the
optimum take-off angle and increased the maxi-
mum vault height and grip height. Further inves-
tigation of the energy dissipation mechanisms
during the pole plant may produce a model that
does not require the imposition of an `excessive
risk' criterion.

The expression for the energy dissipated in the
pole plant (Equation 3) is simple, and only consid-
ers a crude approximation of the effects of the
athlete's take-off technique. The expression must
involve a strong dependence of energy loss with
increasing pole stiffness. A model in which the
energy loss was only a linear function of the pole
stiffness, as opposed to F0

2, was not realistic in that
the optimum take-off angle was always close to
horizontal. Many coaches consider the actions and
body position of the athlete during the take-off to
be important determinants of successful vaulting.
An advanced model of the pole plant and take-off
would consider how the energy losses depend on
the orientation of the arms and trunk, and the
position of the take-off foot relative to the upper
grip (Young & Yeadon 1998).

Future simulation studies of pole vaulting

The model presented here is an important step
towards creating a useful model that can predict the
effects of changes in technique and equipment
selection on an individual athlete's performance.
A comprehensive model of pole vaulting should
include the following features:

· A ¯exible pole that is represented by an elastica.
The pole length, pole stiffness and grip height is
selected by the athlete. An advanced model
would include the non-uniform stiffness of the
pole along its length, and the pole `pre-bend'
(Hubbard 1980; Ekevad & Lundberg 1995).

· A multi-segment model of the vaulter, which
includes internal joint torques and the torque
applied by the vaulter to the end of the pole
(Hubbard 1980; Braff & Dapena 1985; Durey &
Journeaux 1995; Ekevad & Lundberg 1995).
The vaulter model should be based on the
anthropometric and strength measures of the
athlete.

· A sequence of movements of the athlete (and
their timing) during the vault that is selected by
the athlete (Hubbard 1980; Braff & Dapena
1985; Durey & Journeaux 1995; Ekevad &
Lundberg 1995).

Table 2 Comparison of optimum vault parameters for different
values of the vaulter's body stiffness

Vaulter's body

stiffness,

k (N m±1)

Vault

height

(m)

Take-off

angle

(degrees)

Grip

height

(m)

Push

height

(m)

Pole stiffness

rating

(kg)

125 5.40 24 4.75 0.85 72

250 6.00 18 5.10 1.10 80

500 6.45 13 5.10 1.55 93
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· A mechanism of energy loss due to the action of
jumping up at take-off (Fig. 3).

· A mechanism of energy dissipation in the vault-
er's body when the pole is planted into the take-
off box (Equation 3). In an advanced model, the
energy loss will depend on the grip height, pole
stiffness, take-off angle and the athlete's move-
ment patterns and body dimensions.

Investigating the in¯uences of all of these
parameters is a major task requiring a large number
of simulations.

Concluding remarks

This study highlighted the importance of consid-
ering the energy losses during the pole plant and
take-off phases of the vault. A consideration of the
pole plant and take-off phases was necessary to
determine the optimum combination of take-off
velocity, take-off angle, grip height and pole
stiffness for a world-class vaulter.
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